Non-axisymmetric Flows on Hot Jupiters with Oblique Magnetic Fields

نویسندگان

  • Konstantin Batygin
  • Sabine Stanley
چکیده

Giant planets that reside in close proximity to their host stars are subject to extreme irradiation, which gives rise to thermal ionization of trace Alkali metals in their atmospheres. On objects where the atmospheric electrical conductivity is substantial, the global circulation couples to the background magnetic field, inducing supplementary fields and altering the nature of the flow. To date, a number of authors have considered the influence of a spin-pole aligned dipole magnetic field on the dynamical state of a weakly-ionized atmosphere and found that magnetic breaking may lead to significantly slower winds than predicted within a purely hydrodynamical framework. Here, we consider the effect of a tilted dipole magnetic field on the circulation and demonstrate that in addition to regulating wind velocities, an oblique field generates stationary non-axisymmetric structures that adhere to the geometry of the magnetic pole. Using a kinematic perturbative approach, we derive a closed-form solution for the perturbed circulation and show that the fractional distortion of zonal jets scales as the product of the field obliquity and the Elsasser number. The results obtained herein suggest that on planets with oblique magnetic fields, advective shifts of dayside hotspots may have substantial latitudinal components. This prediction may be tested observationally using the eclipse mapping technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stellar wind–magnetosphere interaction at exoplanets: computations of auroral radio powers

We present calculations of the auroral radio powers expected from exoplanets with magnetospheres driven by an Earth-like magnetospheric interaction with the solar wind. Specifically, we compute the twin cell-vortical ionospheric flows, currents, and resulting radio powers resulting from a Dungey cycle process driven by dayside and nightside magnetic reconnection, as a function of planetary orbi...

متن کامل

Hot Jupiters and stellar magnetic activity

Context. Recent observations suggest that stellar magnetic activity may be influenced by the presence of a close-by giant planet. Specifically, chromospheric hot spots rotating in phase with the planet orbital motion have been observed during some seasons in a few stars harbouring hot Jupiters. The spot leads the subplanetary point by a typical amount of ∼ 60◦ − 70◦, with the extreme case of υ ...

متن کامل

On the physics of cold MHD winds from oblique rotators

I show that the self-consistent solution of the problem of MHD plasma flow in the magnetosphere of an oblique rotator with an initially split-monopole magnetic field is reduced to the solution of a similar problem for the axisymmetric rotator. All properties of the MHD cold plasma flows from the axisymmetric rotators with the initial split-monopole magnetic field are valid for the oblique rotat...

متن کامل

Magnetically Controlled Circulation on Hot Extrasolar Planets

Through the process of thermal ionization, intense stellar irradiation renders Hot Jupiter atmospheres electrically conductive. Simultaneously, lateral variability in the irradiation drives the global circulation with peak wind speeds of order ∼ km/s. In turn, the interactions between the atmospheric flows and the background magnetic field give rise to Lorentz forces that can act to perturb the...

متن کامل

Ideal magnetohydrodynamic equilibria with helical symmetry and incompressible flows

A recent study on axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows [H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas 5, 2378 (1998)] is extended to the generic case of helically symmetric equilibria with incompressible flows. It is shown that the equilibrium states of the system under consideration are governed by an elliptic partial differential equation for the he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014